Azure Site Recovery – An overview

Featured

Azure Site RecoveryAzure Site Recovery (ASR) is a powerful disaster recovery and business continuity solution provided by Microsoft Azure. It enables businesses to keep their critical applications and services up and running in the event of unexpected downtime, disasters, or disruptions. With ASR, you can replicate your on-premises virtual machines, physical servers, and even entire data centers to Azure, and quickly restore them when needed.

In this blog post, we will dive deep into the capabilities, benefits, and use cases of Azure Site Recovery. We will also explore the key features, architecture, and pricing model of ASR.

Capabilities of Azure Site Recovery

Azure Site Recovery provides a range of capabilities that can help businesses ensure high availability, data protection, and disaster recovery. Here are some of the key capabilities of ASR:

  1. Replication: ASR can replicate virtual machines, physical servers, and even entire data centers to Azure. This enables businesses to keep their critical applications and services up and running in the event of unexpected downtime, disasters, or disruptions.
  2. Orchestration: ASR can orchestrate the failover and failback of replicated virtual machines and servers. This ensures that the entire failover process is automated, orchestrated, and monitored.
  3. Testing: ASR provides a non-disruptive way to test disaster recovery scenarios without impacting the production environment. This enables businesses to validate their disaster recovery plans and ensure that they are working as expected.
  4. Integration: ASR integrates with a range of Azure services, including Azure Backup, Azure Monitor, Azure Automation, and Azure Security Center. This enables businesses to have a holistic view of their disaster recovery and business continuity operations.

Benefits of Azure Site Recovery

Azure Site Recovery provides a range of benefits to businesses of all sizes and industries. Here are some of the key benefits of ASR:

  1. High availability: ASR enables businesses to achieve high availability of their critical applications and services. This ensures that their customers and employees have access to the applications and services they need, even in the event of unexpected downtime, disasters, or disruptions.
  2. Data protection: ASR ensures that data is protected and can be recovered in the event of data loss or corruption. This is essential for businesses that handle sensitive data or have compliance requirements.
  3. Reduced downtime: ASR can help businesses reduce downtime by providing a fast and efficient way to recover from disasters or disruptions. This can save businesses a significant amount of time, money, and resources.
  4. Simplified disaster recovery: ASR simplifies the disaster recovery process by automating failover and failback operations. This reduces the risk of human error and ensures that the entire process is orchestrated and monitored.
  5. Lower costs: ASR can help businesses reduce their disaster recovery costs by eliminating the need for expensive hardware and infrastructure. This is because businesses can replicate their virtual machines and servers to Azure, which provides a cost-effective disaster recovery solution.

Use cases for Azure Site Recovery

  • Business Continuity: ASR can help businesses ensure business continuity by providing a way to keep their critical applications and services up and running in the event of unexpected downtime, disasters, or disruptions. With ASR, businesses can replicate their on-premises virtual machines and servers to Azure and failover to them in the event of a disaster.
  • Data Protection: ASR can help businesses protect their data by replicating it to Azure and providing a way to recover it in the event of data loss or corruption. With ASR, businesses can set up a replication policy to replicate data to Azure and configure recovery points to restore data to a specific point in time.
  • Migration: ASR can be used to migrate virtual machines and servers from on-premises to Azure. With ASR, businesses can replicate their on-premises workloads to Azure and then failover to the replicated virtual machines in Azure. This can help businesses move their workloads to Azure in a seamless and efficient manner.
  • Testing: ASR provides a non-disruptive way to test disaster recovery scenarios without impacting the production environment. With ASR, businesses can test their disaster recovery plans and ensure that they are working as expected without interrupting their production environment.
  • DevOps: ASR can be used in DevOps scenarios to replicate development and test environments to Azure. This can help businesses reduce the time and cost of setting up and managing these environments. With ASR, businesses can replicate their development and test environments to Azure and then failover to them when needed.
  • Compliance: ASR can help businesses meet compliance requirements by ensuring that their data is protected and can be recovered in the event of data loss or corruption. With ASR, businesses can replicate their data to Azure and then configure recovery points to ensure that their data can be restored to a specific point in time.
  • Hybrid Cloud: ASR can be used in hybrid cloud scenarios to ensure high availability and disaster recovery across on-premises and Azure environments. With ASR, businesses can replicate their on-premises workloads to Azure and then failover to them in the event of a disaster.
  • Multi-Site Disaster Recovery: ASR can be used to provide disaster recovery across multiple sites. With ASR, businesses can replicate their virtual machines and servers to multiple Azure regions and then failover to the replicated virtual machines in the event of a disaster.

In summary, Azure Site Recovery provides a range of capabilities that can help businesses ensure high availability, data protection, and disaster recovery. It can be used in a wide range of use cases across different industries to provide a cost-effective and efficient disaster recovery solution.

Until next time,

Rob

My thoughts on the Future of the Cloud

Many people in the IT consider containers, a technology used to isolate applications with their own environment, to be the future.

However, serverless geeks think that containers will gradually fade away. They will exist as a low-level implementation detail bubbling below the surface but most software developers will not have to deal with them directly. It may seem premature to declare victory for serverless just yet but there are enough positive signs already. Forward-thinking organizations like iRobot, Coca-Cola, Thomson Reuters, and Autodesk are experimenting and adopting serverless technologies. All major and minor Cloud providers — including the aforementioned ones as well as players like Azure, AWS, GCP, IBM, Oracle, and Pivotal are working on serverless offerings.  If you wan to learn more just take a quick look to this link, https://docs.microsoft.com/en-us/archive/blogs/wincat/validating-hybrid-cloud-scenarios-in-the-server-2012-technology-adoption-program-tap.

Together with the major players, a whole ecosystem of startups is emerging. These startups attempt to solve problems around deployment and observability, provide new security solutions, and help enterprises evolve their systems and architectures to take advantage of serverless. This isn’t, of course, to mention a vibrant community of enthusiasts who contribute to serverless open source projects, evangelize at conferences and online, and promote ideas within their organizations.

It would be great to close the book now and declare victory for the serverless camp, but the reality is different. There are challenges that the community and vendors are yet to solve. These challenges are cultural and technological; there’s tribal friction within the tech community; inertia to adoption within organizations, and issues around some of the technology itself. Also remember to make sure that you are properly certified if you are running cloud-based services, it’s the ISO 27017 certificate that you need for that.

Confusion and the Cloud

While adoption of serverless is growing, more work needs to be done by the serverless community to communicate what this technology is all about. The community needs to bring more people in and explain how serverless adds value. It’s inarguable that there are good questions from members of the tech community. These can range from trivial disagreements over “serverless” as a name, to more philosophical arguments about fit, use-case, and lock-in. This as a perfectly normal example of past successes (with other technologies) breeding inertia to change.

This isn’t to say that those who have objections are wrong. Serverless in its current incarnation isn’t suitable in all cases. There are limitations on how long functions can run, tooling is immature and monitoring distributed applications made up of a lot of functions and cloud services can be difficult (although some progress is being made to address this).

There’s also a need for a robust set of example patterns and architectures. After all, the best way to convince someone of the merit of technology is to build something with it and then show them how it was done.

Confusingly, there is a tendency by some vendors to label their offerings as serverless when they aren’t. This makes it look like they are jumping on the bandwagon rather than thoughtfully building services that adhere to serverless principles. Some of the bigger cloud vendors are guilty of this and unfortunately, this confuses people’s understanding of technology.

Go Big or Go Home

At the very large end of the scale, companies like Netflix and Uber are building their own internal serverless-like platforms. But unless you are the size of Netflix or Uber, building your own Function as a service (FaaS) platform from scratch is a terrible idea. Think of it this way like this, its like building a toaster yourself rather than buying a commoditized, off-the-shelf product. Interestingly, Google recently released a product called kNative. This product — based on the open source Kubernetes container orchestration software— is designed to help build, deploy and manage serverless workloads on your own servers.

For example, Google’s Bret McGowen, at Serverlessconf San Francisco ’18, gave of a real-life customer scenario out on an oil rig in the middle of an ocean with poor Internet connectivity. The customer needed to perform computation with terabytes of telemetry data but uploading it to a cloud platform over a connection equivalent to a 3G modem wasn’t feasible. “They cannot use cloud and it’s totally unfair to say — sorry buddy, hosted functions-as-a-service or bust — their developers deserve to have the same serverless experience as the rest of us” was Bret’s explanation why, in this case, running kNative locally on the oil rig made sense.

He is, of course, correct. Having a serverless system running in your own environment — when you cannot use a cloud platform — is better than nothing. However, for most of us, serverless solutions like Google Cloud Functions, Azure Functions, or AWS Lambda offer a far smaller barrier to entry and remove many administrative headaches. It’s fair to say that most companies should look at serverless solutions like Lambda first and if they don’t satisfy requirements look at other alternatives, like kNative and containers, second.

The Future…in my humble opinion

It’s likely that some of the major limitations with serverless functions are going to be solved in the coming years, if not months. Cloud vendors will allow functions to run for longer, support more languages, and allow deeper customizations. A lot of work is being done by cloud vendors to allow developers to bring their own containers to a hosted environment and then have those containers seamlessly managed by the platform alongside regular functions.

In the end, “do you have a choice?” “No, none, whatsoever” was Bret’s succinct, brutal answer at the conference. Existing limitations will be solved and serverless compute technologies will herald the rise of new, emerging architectural patterns and practices. We are yet to see what these are but, this is the future and it is unavoidable.

Cloud computing is where we are, and where the world is going for the next decade or two. After that, probably something new will come along.

But the reasons for going to cloud computing in general and the inevitable wind-down of on-premises to niche special functions are now pretty obvious.

  • Security – Big cloud operators have FAR more security people and capacity than even a big enterprise, and your own disgruntled employees don’t have the keys to the servers.
  • Cost-effectiveness – Economies of scale. The rule of big numbers.
  • Zero capital outlay – reduced costs.
  • For software developers, no more software piracy. That’s a big saving on the cost of developing software, especially for sales in certain countries.
  • Compliance – So much easier if your cloud vendor is fully certified, so you only have to worry about your part of the puzzle.
  • Energy efficiency – Big, well-designed datacentres use a LOT less global resources.

My next post in this series will be on “The Past and On-prem and the Cloud?

Until next time, Rob

MVPITPro Podcast – Ep5 – A Talk with Mike Bender from the Azure Cloud Ops Advocate Team

Join us for episode 3 of the new MVPIT Pro Podcast, featuring your hosts Andy Syrewicze from Altaro Software and myself    Jeffrey Snover @jsnover 

In this episode Andy and Rob Talk about:

  • Windows Server 2019 TP Build 17666
  • GDPR
  • Microsoft Loves Linux!
  • Steps that IT Pros can take today to become Microsoft MVPs
  • and much, much more!

Our special guest interview this episode features The one and only Jeffrey Snover, Microsoft Technical Fellow and Creator of PowerShell!

Enjoy 🙂 !!!

YouTube player

The Microsoft Cloud: A Complete Picture

If you’re looking to learn more about Microsoft cloud, including how your organization could benefit from it, you’re in the right place. This comprehensive guide covers the basics and beyond, from “What is Microsoft cloud?”, to services and security.

Feel free to skip to the parts you’re most interested in by using the table of contents below. If you have any questions after reading, don’t hesitate to get in touch—I’m happy to provide clarification and answer any of your questions.

Continue reading

Azure Stack 101: The Definitive Introduction

Azure Stack

Microsoft’s Azure Stack is an excellent toolset that allows enterprises to run a hybrid cloud right in their own datacenters, giving them additional cloud options.

But to really use it to its best advantage, IT pros should know the ins and outs of Azure Stack so they can use it within their business IT infrastructures to better manage, speed up and control their Azure cloud deployments and workloads.

A good place to start is with a primer on Azure Stack itself to give business users a broad look at what’s under the hood of their IT infrastructure.

Continue reading

Infrastructure: from your Enterprise to the Starship Enterprise: Building the right Playground – Part 1

Now, if you know me or every met me in any way, you know that I am a big Trekkie. The Star Trek series was very defining for my life in my ways. From the original series to Star Trek Next Generation to DS9, Enterprise, and off course Voyager. So recently, I decided to write this blog series in a context that many of us can understand over the coming weeks. I know that Star Trek is the love of many IT Pros.  And so we began this series on infrastructure.. Continue reading

What Is Hyper-V? The Authoritative Guide

hyper-v

What Is Hyper-V? [Definition & Uses For It]

Whether you’re just beginning to look into virtualization platform options for your company, or you’re a new Hyper-V user trying to get up to speed, it can be a challenge to find all the information you need in one place. That’s why I created this guide—to give you an all-in-one resource you can bookmark and refer back to as often as you need to, so you can get up and running on Hyper-V more smoothly. Continue reading